
EGC455
Design and Verification of SOC

10/23/2021

Conventional TestBench 1

EGC 455

SOC Design &Verification

Verification Using
Conventional Test Bench

Baback Izadi
Division of Engineering Programs
bai@engr.newpaltz.edu

SUNY – New Paltz
Elect. & Comp. Eng.

Basic Verification Environment

Verification methodologies differ
mostly in:
• How and when (online vs. offline)

testcases / test patterns are
generated

• How results are predicted and
when these are compared to actual
results from device under test

• Choice of underlying tools and
infrastructure

• Abstraction level of reference
model

• Completeness of state space
exploration

• Choice of programming language

1

2

EGC455
Design and Verification of SOC

10/23/2021

Conventional TestBench 2

SUNY – New Paltz
Elect. & Comp. Eng.

Environment Structure

DUT
Mon1

Mon3

Mon2

Generator(s) /
Sequencer(s)

UnitMonitor / Scoreboard
“when seeing A,

expect B to happen”
else, error

“B”“A”

Driver

SUNY – New Paltz
Elect. & Comp. Eng.

Environmental Structure

Testbench Generator

 Directed Testcases

 Random Generator

 Constrained Random Generator

Checker

Monitor

Scoreboard

3

4

EGC455
Design and Verification of SOC

10/23/2021

Conventional TestBench 3

SUNY – New Paltz
Elect. & Comp. Eng.

Functional verification approaches

Now that you've seen the basic structure….

 Black-Box approach

 White-Box approach

 Grey-Box approach

SUNY – New Paltz
Elect. & Comp. Eng.

Develop a Test Plan

 The Test Plan is your key to a successful environment. This is
developed by you, based on your interpretation of the
specification(s).

 It must be detailed to reflect your understanding of the
design, and how that design can be stressed.

 It should be written in a way to allow for comprehensive
review and feedback from your peers.

 This is your guidebook for developing the environment and
executing tests.

5

6

EGC455
Design and Verification of SOC

10/23/2021

Conventional TestBench 4

SUNY – New Paltz
Elect. & Comp. Eng.

Test Plan: Content Requirements

 Define the boundaries of the DUT.
 What blocks of logic will be included? Will a different

environment cover the logic that's not included?
 Hardware arrays/memories, or use a software behavioral?
 Any short-cuts should be defined and listed. Maybe a behavioral doesn't

act like the real HW. How can you validate that?

 Generation: What features will be exercised? What are the
min and max values for that stimulus? Do features need to
interact depending on configuration?

 Checkers: List out all the checks for validating each feature.
Be detailed.

SUNY – New Paltz
Elect. & Comp. Eng.

Test Plan

If it wasn't verified, it probably has defects.

 What logic will you be testing?

 What logic will not be tested (by you)?

 Is there additional logic being left out?

But wait, there's more!

 Environment coverage:
 Are generators being fully utilized?
 Did checkers get executed?
 Are all testcases still running?
 Did something in the environment stop working?

7

8

EGC455
Design and Verification of SOC

10/23/2021

Conventional TestBench 5

SUNY – New Paltz
Elect. & Comp. Eng.

Three Simulation Commandments

 Thou shalt stress thine logic harder than it will ever be stressed
again

Thou shalt not
move onto a higher
platform until the

bug rate has
dropped off

Thou shalt place
checking upon all

things

Thou shalt stress
thine logic

harder than it
will ever be

stressed again

SUNY – New Paltz
Elect. & Comp. Eng.

Multiple Environments
 All the planning has been for a single environment

 Projects typically employ multiple environments to stress the
design using several methods.

 As we covered earlier:
 Designer Sim
 Unit Sim
 Element Sim (multiple units)
 Chip / System Sim

 To reduce chance for human error, we want overlapping
environments.

9

10

EGC455
Design and Verification of SOC

10/23/2021

Conventional TestBench 6

SUNY – New Paltz
Elect. & Comp. Eng.

A simple adder example
Blackbox Approach

SUNY – New Paltz
Elect. & Comp. Eng.

What is the test plan?

11

12

EGC455
Design and Verification of SOC

10/23/2021

Conventional TestBench 7

SUNY – New Paltz
Elect. & Comp. Eng.
SUNY – New Paltz
Elect. & Comp. Eng.

// Design file
module adder

(input [7:0] A,
input [7:0] B,
input clk,
input rst_n,
output reg [7:0] sum,
output reg carry);

always @(posedge clk or negedge rst_n)
if (!rst_n)

{carry,sum} <= 0;
else

{carry,sum} <= A + B;
endmodule

A simple adder example
Whitebox Approach

SUNY – New Paltz
Elect. & Comp. Eng.

Any change to the test plan?

13

14

EGC455
Design and Verification of SOC

10/23/2021

Conventional TestBench 8

SUNY – New Paltz
Elect. & Comp. Eng.
SUNY – New Paltz
Elect. & Comp. Eng.

// Testbench file
module top (
output reg[7:0] A,
output reg[7:0] B,
output reg clk,
output reg rst_n,
input wire carry,
input wire [7:0] sum);

adder_sv ADD (.*);

initial begin
clk = 0;
rst_n = 0;
A = 0;
B = 0;
@(posedge clk);
@(posedge clk);
rst_n = 1;

end

always #10 clk = ~clk;

initial begin
@(posedge rst_n);
for (A = 0; A <= 25; A ++) begin

for (B = 0; B <= 10; B++) begin
@(posedge clk);
@(negedge clk);
assert({carry,sum} == A + B)

else begin
$display("%0d + %0d = %0d not %0d",A, B,A+B,{carry, sum});

$stop;
end

end
end
$stop;

end

endmodule // adder_tester

SUNY – New Paltz
Elect. & Comp. Eng.

Tiny ALU Specification and Test Plan
 ALU works at the rising edge of the clock. When start is active, it

reads the operands. Operations can take any number of cycles. It
rises done one clock cycle when the operation is complete. The
reset_n is active low. The start must remain high until done
signal is raised. No done signal on nop.

Tiny ALU

Op [2:0]

A [7:0]

B [7:0]

Result [15:0]

done

start

reset_nclk

15

16

EGC455
Design and Verification of SOC

10/23/2021

Conventional TestBench 9

SUNY – New Paltz
Elect. & Comp. Eng.

Test Plan for Tiny ALU

 https://www.youtube.com/watch?v=iX7-41uG8uE

Operation Opcode

no_op 3’b000

add_op 3’b001

and_op 3’b010

xor_op 3’b011

mul_op 3’b100

unused 3’b101 - 3’b111

SUNY – New Paltz
Elect. & Comp. Eng.

What is the test plan?

17

18

EGC455
Design and Verification of SOC

10/23/2021

Conventional TestBench 10

SUNY – New Paltz
Elect. & Comp. Eng.
SUNY – New Paltz
Elect. & Comp. Eng.

1
9

module top;
typedef enum bit[2:0] {no_op = 3'b000,

add_op = 3'b001,
and_op = 3'b010,
xor_op = 3'b011,
mul_op = 3'b100,
rst_op = 3'b111} operation_t;

byte unsigned A;
byte unsigned B;
bit clk;
bit reset_n;
wire [2:0] op;
bit start;
wire done;
wire [15:0] result;
operation_t op_set;
assign op = op_set;
tinyalu DUT (.A, .B, .clk, .op, .reset_n, .start, .done, .result

SUNY – New Paltz
Elect. & Comp. Eng.
SUNY – New Paltz
Elect. & Comp. Eng.

covergroup op_cov;

coverpoint op_set {

bins single_cycle[] = {[add_op : xor_op],
rst_op,no_op};

bins multi_cycle = {mul_op};

bins opn_rst[] = ([add_op:mul_op] => rst_op);

bins rst_opn[] = (rst_op => [add_op:mul_op]);

bins sngl_mul[] = ([add_op:xor_op],no_op => mul_op);

bins mul_sngl[] = (mul_op => [add_op:xor_op], no_op);

bins twoops[] = ([add_op:mul_op] [* 2]);

bins manymult = (mul_op [* 3:5]);

}

endgroup

19

20

EGC455
Design and Verification of SOC

10/23/2021

Conventional TestBench 11

SUNY – New Paltz
Elect. & Comp. Eng.
SUNY – New Paltz
Elect. & Comp. Eng.

2
1

covergroup zeros_or_ones_on_ops;

all_ops : coverpoint op_set {

ignore_bins null_ops = {rst_op, no_op};}

a_leg: coverpoint A {

bins zeros = {'h00};

bins others= {['h01:'hFE]};

bins ones = {'hFF};

}

b_leg: coverpoint B {

bins zeros = {'h00};

bins others= {['h01:'hFE]};

bins ones = {'hFF};

}

SUNY – New Paltz
Elect. & Comp. Eng.
SUNY – New Paltz
Elect. & Comp. Eng.

2
2

op_00_FF: cross a_leg, b_leg, all_ops {

bins add_00 = binsof (all_ops) intersect {add_op} &&

(binsof (a_leg.zeros) || binsof
(b_leg.zeros));

bins add_FF = binsof (all_ops) intersect {add_op} &&

(binsof (a_leg.ones) || binsof
(b_leg.ones));

bins and_00 = binsof (all_ops) intersect {and_op} &&

(binsof (a_leg.zeros) || binsof
(b_leg.zeros));

bins and_FF = binsof (all_ops) intersect {and_op} &&

(binsof (a_leg.ones) || binsof
(b_leg.ones));

bins xor_00 = binsof (all_ops) intersect {xor_op} &&

(binsof (a_leg.zeros) || binsof
(b_leg.zeros));

21

22

EGC455
Design and Verification of SOC

10/23/2021

Conventional TestBench 12

SUNY – New Paltz
Elect. & Comp. Eng.
SUNY – New Paltz
Elect. & Comp. Eng.

2
3

bins xor_FF = binsof (all_ops) intersect {xor_op} &&

(binsof (a_leg.ones) || binsof
(b_leg.ones));

bins mul_00 = binsof (all_ops) intersect {mul_op} &&

(binsof (a_leg.zeros) || binsof
(b_leg.zeros));

bins mul_FF = binsof (all_ops) intersect {mul_op} &&

(binsof (a_leg.ones) || binsof
(b_leg.ones));

bins mul_max = binsof (all_ops) intersect {mul_op} &&

(binsof (a_leg.ones) && binsof
(b_leg.ones));

ignore_bins others_only =

binsof(a_leg.others) &&
binsof(b_leg.others);

}

endgroup

SUNY – New Paltz
Elect. & Comp. Eng.
SUNY – New Paltz
Elect. & Comp. Eng.

2
4

initial begin

clk = 0;

forever begin

#10;

clk = ~clk;

end

end

op_cov oc;

zeros_or_ones_on_ops c_00_FF;

initial begin : coverage

oc = new();

c_00_FF = new();

forever begin @(negedge clk);

oc.sample();

c_00_FF.sample();

end

end : coverage

23

24

EGC455
Design and Verification of SOC

10/23/2021

Conventional TestBench 13

SUNY – New Paltz
Elect. & Comp. Eng.
SUNY – New Paltz
Elect. & Comp. Eng.

2
5

function operation_t get_op();

bit [2:0] op_choice;

op_choice = $random;

case (op_choice)

3'b000 : return no_op;

3'b001 : return add_op;

3'b010 : return and_op;

3'b011 : return xor_op;

3'b100 : return mul_op;

3'b101 : return no_op;

3'b110 : return rst_op;

3'b111 : return rst_op;

endcase // case (op_choice)

endfunction : get_op

SUNY – New Paltz
Elect. & Comp. Eng.
SUNY – New Paltz
Elect. & Comp. Eng.

2
6

function byte get_data();

bit [1:0] zero_ones;

zero_ones = $random;

if (zero_ones == 2'b00)

return 8'h00;

else if (zero_ones == 2'b11)

return 8'hFF;

else

return $random;

endfunction : get_data

25

26

EGC455
Design and Verification of SOC

10/23/2021

Conventional TestBench 14

SUNY – New Paltz
Elect. & Comp. Eng.
SUNY – New Paltz
Elect. & Comp. Eng.

2
7

always @(posedge done) begin : scoreboard

shortint predicted_result;

#1;

case (op_set)

add_op: predicted_result = A + B;

and_op: predicted_result = A & B;

xor_op: predicted_result = A ^ B;

mul_op: predicted_result = A * B;

endcase // case (op_set)

if ((op_set != no_op) && (op_set != rst_op))

if (predicted_result != result)

$error ("FAILED: A: %0h B: %0h op: %s result: %0h",

A, B, op_set.name(), result);

end : scoreboard

SUNY – New Paltz
Elect. & Comp. Eng.
SUNY – New Paltz
Elect. & Comp. Eng.

2
8

initial begin : tester

reset_n = 1'b0;

@(negedge clk);

@(negedge clk);

reset_n = 1'b1;

start = 1'b0;

repeat (1000) begin

@(negedge clk);

op_set = get_op();

A = get_data();

B = get_data();

start = 1'b1;

case (op_set) // handle the start signal

no_op: begin

@(posedge clk);

start = 1'b0;

end

27

28

EGC455
Design and Verification of SOC

10/23/2021

Conventional TestBench 15

SUNY – New Paltz
Elect. & Comp. Eng.
SUNY – New Paltz
Elect. & Comp. Eng.

rst_op: begin

reset_n = 1'b0;

start = 1'b0;

@(negedge clk);

reset_n = 1'b1;

end

default: begin

wait(done);

start = 1'b0;

end

endcase // case (op_set)

end

$stop;

end : tester

endmodule : top

SUNY – New Paltz
Division of Engineering Programs

Object Oriented Approach

29

30

EGC455
Design and Verification of SOC

10/23/2021

Conventional TestBench 16

SUNY – New Paltz
Elect. & Comp. Eng.

Data members

Constructor – Only necessary if
initialization needed. Otherwise

use implicit constructor

Method

SUNY – New Paltz
Elect. & Comp. Eng.

Declared as class

Includes functions and
tasks as methods

Memory is not allocated
here

Memory allocated here

Method called to
determine area

31

32

EGC455
Design and Verification of SOC

10/23/2021

Conventional TestBench 17

SUNY – New Paltz
Elect. & Comp. Eng.

A Square is a Rectangle with
the same length and width

Leverage rectangle_t data and
methods

In this case, constructor (new)
calls parent’s constructor

We can use the method from
the parent

SUNY – New Paltz
Elect. & Comp. Eng.

result_f reader
gen

(generator)
Behavioral

TLM
DUT

stim_f

gen
(generator) stim_f result_f reader

a [7 : 0]

D r i ve r
R T L

or
Gate

result[15:0]]]]]]

R e s p o n d e r

b [7 : 0]

c [7 : 0]

r e s u l t _ r e a d yd [7 : 0]

i i i i nput_ready

cllllock

r s tttt

© 2014 Mentor Graphics Corporation, all rights reserved.

33

34

EGC455
Design and Verification of SOC

10/23/2021

Conventional TestBench 18

SUNY – New Paltz
Elect. & Comp. Eng.
SUNY – New Paltz
Elect. & Comp. Eng.

© 2014 Mentor Graphics Corporation, all rights reserved.

SUNY – New Paltz
Elect. & Comp. Eng.
SUNY – New Paltz
Elect. & Comp. Eng.

© 2014 Mentor Graphics Corporation, all rights reserved.

35

36

EGC455
Design and Verification of SOC

10/23/2021

Conventional TestBench 19

SUNY – New Paltz
Elect. & Comp. Eng.
SUNY – New Paltz
Elect. & Comp. Eng.

© 2014 Mentor Graphics Corporation, all rights reserved.

SUNY – New Paltz
Elect. & Comp. Eng.
SUNY – New Paltz
Elect. & Comp. Eng.

© 2014 Mentor Graphics Corporation, all rights reserved.

37

38

